We have developed a novel vector pTCS, as a tool for efficient selection of open reading frame (ORF)-containing inserts. In pTCS clones containing an insert with an ORF a downstream marker gene (immE3, conferring resistance to colicin) is activated via translational coupling with the insert, and transformed cells can then be selected by exposure to colicin E3. Our method differs from previous methods in that the marker gene is activated without protein fusion, and that selection occurs irrespective of the reading frame of the insert.

Download full-text PDF

Source
http://dx.doi.org/10.2144/000112629DOI Listing

Publication Analysis

Top Keywords

reading frame
12
novel vector
8
open reading
8
translational coupling
8
marker gene
8
vector positive
4
positive selection
4
selection inserts
4
inserts harboring
4
harboring open
4

Similar Publications

Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.

Article Synopsis
  • The mammalian mitochondrial protein synthesis system is responsible for synthesizing 13 crucial subunits for energy production, but the exact role of IF-3mt in translation initiation is still unclear.
  • Researchers created a mitochondrial translation system to explore IF-3mt's proofreading abilities, revealing it helps distinguish between different start codons for more accurate protein synthesis.
  • The findings indicate that IF-3mt not only supports initiation from standard AUG start codons but can also facilitate initiation from non-AUG codons like AUA, highlighting its adaptability in working with leaderless mRNAs.
View Article and Find Full Text PDF

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Expression profiles of NOD1 and NOD2 and pathological changes in gills during Flavobacterium columnare infection in yellow catfish, Tachysurus fulvidraco.

J Fish Biol

January 2025

Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.

NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively.

View Article and Find Full Text PDF

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!