Aims/hypothesis: Opening of ATP-sensitive potassium (K(ATP)) channels during myocardial ischaemia shortens action potential duration and is believed to be an adaptive, energy-sparing response. Thiazolidinedione drugs block K(ATP) channels in non-cardiac cells in vitro. This study determined whether thiazolidinedione drugs block cardiac K(ATP) channels in vivo.
Methods: Experiments in 68 anaesthetised pigs determined: (1) effects of inert vehicle, troglitazone (10 mg/kg i.v.) or rosiglitazone (0.1 or 1.0 mg/kg i.v.) on epicardial monophasic action potential (MAP) during 90 min low-flow ischaemia; (2) effects of troglitazone, rosiglitazone or pioglitazone (1 mg/kg i.v.) on response of MAP to intracoronary infusion of a K(ATP) channel opener, levcromakalim; and (3) effects of inert vehicle, rosiglitazone (1 mg/kg i.v.) or the sarcolemmal K(ATP) blocker HMR-1098 on time to onset of ventricular fibrillation following complete coronary occlusion.
Results: With vehicle, epicardial MAP shortened by 44+/-9 ms during ischaemia. This effect was attenuated to 12+/-8 ms with troglitazone and 6+/-6 ms with rosiglitazone (p<0.01 for both vs vehicle), suggesting K(ATP) blockade. Intracoronary levcromakalim shortened MAP by 38+/-10 ms, an effect attenuated to 12+/-8, 13+/-4 and 9+/-5 ms during co-treatment with troglitazone, rosiglitazone or pioglitazone (p<0.05 for each), confirming K(ATP) blockade. During coronary occlusion, median time to ventricular fibrillation was 29 min in pigs treated with vehicle and 6 min in pigs treated with rosiglitazone or HMR-1098 (p<0.05 for both vs vehicle), indicating that K(ATP) blockade promotes ischaemic ventricular fibrillation in this model.
Conclusions/interpretation: Thiazolidinedione drugs block cardiac K(ATP) channels at clinically relevant doses and promote onset of ventricular fibrillation during severe ischaemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633423 | PMC |
http://dx.doi.org/10.1007/s00125-008-0924-0 | DOI Listing |
Int J Mol Sci
January 2025
Endocrinology Research Center, Moscow 117292, Russia.
Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA.
Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.
View Article and Find Full Text PDFFunction (Oxf)
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!