One of the major obstacles in the design of an effective vaccine against HIV-1 is its antigenic variation, which results in viral escape from the immune system. Through a bioinformatics approach, we developed an innovative multivalent HIV-1 vaccine comprised of a pool of 176 lipidated and nonlipidated peptides representing variable regions of Env and Gag proteins. The potency and breadth of the candidate vaccine against a panel of HIV-1 subtypes was evaluated in nonhuman primate (cynomolgus macaques) and humanized mouse (HLA-A2.1) models. The results demonstrate strong immunogenicity with both breadth (humoral and cellular immunity) and depth (immune recognition of widely divergent viral sequences) against heterologous HIV-1 subtypes A-F.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.180.4.2174 | DOI Listing |
Antib Ther
October 2024
Antagen Pharmaceuticals, Inc., Canton, MA 02021, United States.
PLoS Pathog
October 2024
Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Amsterdam, The Netherlands.
An effective human immunodeficiency virus 1 (HIV-1) vaccine will most likely have to elicit broadly neutralizing antibodies (bNAbs) to overcome the sequence diversity of the envelope glycoprotein (Env). So far, stabilized versions of Env, such as SOSIP trimers, have been able to induce neutralizing antibody (NAb) responses, but those responses are mainly strain-specific. Here we attempted to broaden NAb responses by using a multivalent vaccine and applying a number of design improvements.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
Various design platforms are available to stabilize soluble HIV-1 envelope (Env) trimers, which can be used as antigenic baits and vaccine antigens. However, stabilizing HIV-1 clade C trimers can be challenging. Here, we stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite-neutralizer (AIIMS_329) using multiple platforms, including SOSIP.
View Article and Find Full Text PDFPLoS One
September 2024
HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
Significant progress has been made in HIV-1 research; however, researchers have not yet achieved the objective of eradicating HIV-1 infection. Accordingly, in this study, eucaryotic and procaryotic in silico vaccines were developed for HIV-Gag polyproteins from 100 major HIV subtypes and CRFs using immunoinformatic techniques to simulate immune responses in mice and humans. The epitopes located in the conserved domains of the Gag polyprotein were evaluated for allergenicity, antigenicity, immunogenicity, toxicity, homology, topology, and IFN-γ induction.
View Article and Find Full Text PDFNat Immunol
June 2024
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!