Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/72.950142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!