Tracking nonparameterized object contours in video.

IEEE Trans Image Process

Intelligent Sensory Information Systems Group, Faculty of Science, University of Amsterdam, NL-1098 SJ, Amsterdam, The Netherlands.

Published: May 2010

We propose a new method for contour tracking in video. The inverted distance transform of the edge map is used as an edge indicator function for contour detection. Using the concept of topographical distance, the watershed segmentation can be formulated as a minimization. This new viewpoint gives a way to combine the results of the watershed algorithm on different surfaces. In particular, our algorithm determines the contour as a combination of the current edge map and the contour, predicted from the tracking result in the previous frame. We also show that the problem of background clutter can be relaxed by taking the object motion into account. The compensation with object motion allows to detect and remove spurious edges in background. The experimental results confirm the expected advantages of the proposed method over the existing approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2002.802522DOI Listing

Publication Analysis

Top Keywords

edge map
8
object motion
8
tracking nonparameterized
4
nonparameterized object
4
object contours
4
contours video
4
video propose
4
propose method
4
contour
4
method contour
4

Similar Publications

MonoSeg: An Infrared UAV Perspective Vehicle Instance Segmentation Model with Strong Adaptability and Integrity.

Sensors (Basel)

January 2025

National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.

Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.

View Article and Find Full Text PDF

Machine Condition Monitoring System Based on Edge Computing Technology.

Sensors (Basel)

December 2024

Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 812 43 Bratislava, Slovakia.

The core of this publication is the design of a system for evaluating the condition of production equipment and machines by monitoring selected parameters of the production process with an additional sensor subsystem. The main positive of the design is the processing of data from the sensor layer using artificial intelligence (AI) and expert systems (ESs) with the use of edge computing (EC). Sensor information is processed directly at the sensor level on the monitored equipment, and the results of the individual subsystems are stored in the form of triggers in a database for use in the predictive maintenance process.

View Article and Find Full Text PDF

The rapid changes in the global environment have led to an unprecedented decline in biodiversity, with over 28% of species facing extinction. This includes snakes, which are key to ecological balance. Detecting snakes is challenging due to their camouflage and elusive nature, causing data loss and feature extraction difficulties in ecological monitoring.

View Article and Find Full Text PDF

Coronary artery stenosis detection remains a challenging task due to the complex vascular structure, poor quality of imaging pictures, poor vessel contouring caused by breathing artifacts and stenotic lesions that often appear in a small region of the image. In order to improve the accuracy and efficiency of detection, a new deep-learning technique based on a coronary artery stenosis detection framework (DCA-YOLOv8) is proposed in this paper. The framework consists of a histogram equalization and canny edge detection preprocessing (HEC) enhancement module, a double coordinate attention (DCA) feature extraction module and an output module that combines a newly designed loss function, named adaptive inner-CIoU (AICI).

View Article and Find Full Text PDF

Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!