The use of logic relationships to model colon cancer gene expression networks with mRNA microarray data.

J Biomed Inform

College of Electronic Information and Control Engineering, Beijing University of Technology, Pingleyuan 100#, Chaoyang District 100022, PR China.

Published: August 2008

The ultimate goal of genomics research is to describe the network of molecules and interactions that govern all biological functions and disease processes in cells. Nonlinear interactions among genes in terms of their logic relationships play a key role for deciphering the networks of molecules that underlie cellular function. We present a method based on a graph coloring scheme and information theory to identify the gene expression network with lower and higher order logic interactions of genes. The analysis of oncogenes and suppressor genes from a colon cancer mRNA microarray dataset identifies a gene expression network with directionality and weights that reflects intracellular communication pathways. The success of the proposed method in mining hidden, complicated gene interactions and reliably interpreting experimental results suggests that the proposed method is a useful tool for understanding cancer systems. Extension of this method holds the potential to be fruitful for understanding other complex, nonsymmetric systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2007.11.006DOI Listing

Publication Analysis

Top Keywords

gene expression
12
logic relationships
8
colon cancer
8
mrna microarray
8
interactions genes
8
expression network
8
proposed method
8
relationships model
4
model colon
4
gene
4

Similar Publications

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

The Pacific oyster Crassostrea gigas is rich in taurine, a conditionally essential amino acid functioning in anti-oxidation, anti-inflammation, anti-aging, osmoregulation, and neuromodulation. Breeding oyster varieties with enhanced taurine content is significant to meet people's demand for high-quality oysters. In the present study, polymorphisms in the oyster cysteamine dioxygenase (CgADO) gene that encodes the central enzyme of the cysteamine pathway for taurine synthesis were investigated, and their association with taurine content was assessed in the Changhai (CH) and Qinhuangdao (QHD) populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!