Development of motor networks in zebrafish embryos.

Zebrafish

University of Michigan, 815 North University, Ann Arbor, Michigan 48109-1048, USA.

Published: April 2008

AI Article Synopsis

  • Research on motor network development often focuses on the spinal cord due to its simplicity compared to higher brain areas, highlighting how much we understand about motor patterns from lower vertebrates.
  • Despite this understanding, the initial stages of how motor networks form are still largely unknown, particularly regarding the roles of genes and electrical activity.
  • Zebrafish have emerged as a valuable model for studying neural development due to their transparent embryos, which allow for direct observations of cellular activity and genetics during early motor circuit formation.

Article Abstract

General mechanisms of motor network development have often been examined in the spinal cord because of its relative simplicity when compared to higher parts of the brain. Indeed, most of our current understanding of motor pattern generation comes from work in the lower vertebrate spinal cord. Nevertheless, very little is known about the initial stages of motor network formation and the interplay between genes and electrical activity. Recent research has led to the establishment of the zebrafish as a key model system to study the genetics of neural development. The spinal cord of zebrafish is amenable to optical and electrophysiological analysis of neuronal activity even at the earliest embryonic stages when the network is immature. The combination of physiology and genetics in the same animal model should lead to insights into the basic mechanisms of motor circuit formation. This paper reviews recent work on the development of zebrafish motor activity and discusses them in the context of the current knowledge of embryonic and larval zebrafish spinal cord morphology and physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1089/zeb.2006.3.173DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
mechanisms motor
8
motor network
8
zebrafish
5
motor
5
development
4
development motor
4
motor networks
4
networks zebrafish
4
zebrafish embryos
4

Similar Publications

Treatment Outcomes of Canine Orbital Meningiomas in Seven Cases.

J Am Anim Hosp Assoc

January 2025

Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan (T.M.).

Although intracranial and spinal cord meningioma prognoses have been reported, few studies have evaluated the outcomes and prognoses of orbital and optic nerve meningiomas in dogs. We aimed to evaluate the outcomes of canine orbital meningiomas. The seven dogs included were cytologically or histopathologically diagnosed with meningiomas.

View Article and Find Full Text PDF

An 8 yr old, male, mixed-breed dog was presented with a 2 mo history of progressive weakness, worsened in the last 2 days before examination. Neurological examination revealed ambulatory tetraparesis, ataxia, and proprioceptive deficits in all four limbs. Menace response was reduced in the right eye and discomfort was detected on neck manipulation.

View Article and Find Full Text PDF

MYCN-amplified spinal ependymomas: a rare aggressive subtype. Illustrative cases.

J Neurosurg Case Lessons

January 2025

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.

Background: Spinal ependymomas are typically slow-growing tumors with a favorable prognosis. Recently, a new aggressive subtype has emerged with its own distinct histopathological and molecular features characterized by MYCN amplification. However, this subtype of spinal ependymoma is rare, and studies on its imaging characteristics are limited.

View Article and Find Full Text PDF

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF

Humans can perform movements in various physical environments and positions (corresponding to different experienced gravity), requiring the interaction of the musculoskeletal system, the neural system and the external environment. The neural system is itself comprised of several interactive components, from the brain mainly conducting motor planning, to the spinal cord (SC) implementing its own motor control centres through sensory reflexes. Nevertheless, it remains unclear whether similar movements in various environmental dynamics necessitate adapting modulation at the brain level, correcting modulation at the spinal level, or both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!