Phase tracking and restoration of circadian rhythms by model-based optimal control.

IET Syst Biol

Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany.

Published: January 2008

Periodic cellular processes and especially circadian rhythms governed by the oscillating expression of a set of genes based on feedback regulation by their products have become an important issue in biology and medicine. The central circadian clock is an autonomous biochemical oscillator with a period close to 24 h. Research in chronobiology demonstrated that light stimuli can be used to delay or advance the phase of the oscillator, allowing it to influence the underlying physiological processes. Phase shifting and restoration of altered rhythms can generally be viewed as open-loop control problems that may be used for therapeutic purposes in diseases. A circadian oscillator model of the central clock mechanism is studied for the fruit fly Drosophila and show how model-based mixed-integer optimal control allows for the design of chronomodulated pulse-stimuli schemes achieving circadian rhythm restoration in mutants and optimal phase synchronisation between the clock and its environment.

Download full-text PDF

Source
http://dx.doi.org/10.1049/iet-syb:20070016DOI Listing

Publication Analysis

Top Keywords

circadian rhythms
8
optimal control
8
circadian
5
phase
4
phase tracking
4
tracking restoration
4
restoration circadian
4
rhythms model-based
4
model-based optimal
4
control periodic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!