An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.

Rev Sci Instrum

Department of Geosciences, Faculty of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.

Published: January 2008

A new external heating configuration is presented for high-temperature diamond anvil cell instruments. The supporting rockers are thermally excited by induction from an externally mounted copper coil passing a 30 kHz alternating current. The inductive heating configuration therefore avoids the use of breakable wires, yet is capable of cell temperatures of 1100 K or higher. The diamond anvil cell has no resistive heaters, but uses a single-turn induction coil for elevating the temperature. The induction coil is placed near the diamonds and directly heats the tungsten carbide rockers that support the diamond. The temperature in the cell is determined from a temperature-power curve calibrated by the ratio between the intensities of the Stokes and anti-Stokes Raman lines of silicon. The high-pressure transformation of quartz to coesite is successfully observed by micro-Raman spectroscopy using this apparatus. The induction heating diamond anvil cell is thus a useful alternative to resistively heated diamond anvil cells.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2827138DOI Listing

Publication Analysis

Top Keywords

diamond anvil
20
anvil cell
16
induction heating
8
heating diamond
8
heating configuration
8
induction coil
8
diamond
6
cell
6
induction
5
anvil
5

Similar Publications

Absence of High-Pressure Ground-State Reentrant Ferroelectricity in PbTiO_{3}.

Phys Rev Lett

December 2024

Departments of Physics, Chemistry, and Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois 60607, USA.

We study ferroelectricity in the classic perovskite ferroelectric PbTiO_{3} to high pressures with density functional theory (DFT) and experimental diamond-anvil techniques. We use second harmonic generation spectroscopy to detect lack of inversion symmetry. Consistent with early understanding and experiments, we find that ferroelectricity disappears at moderate pressures.

View Article and Find Full Text PDF

The phase changes and reactivity of 1-pentadecene (CH) were investigated using Raman spectroscopy under high-pressure and high-temperature conditions using diamond anvil cells. At room temperature, the phase changes from liquid phase to solid phase I, and solid phase I to solid phase II were observed at 0.3 GPa and 4.

View Article and Find Full Text PDF

Elementary Exciton Processes of InP/ZnS Quantum Dots Under Applied Pressure.

Nano Lett

December 2024

Graduate School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.

In colloidal quantum dots (QDs), excitons are confined within nanoscale dimensions, and the relaxation of hot electrons occurs through Auger cooling. The behavior of hot electrons is evident under ambient pressure. Nanocrystal characteristics, including their size, are key to determining hot electron behavior because they serve as the stage.

View Article and Find Full Text PDF

We have synthesized the first hydrous sp-carbonate by laser-heating Ba[CO], CO and HO in a diamond anvil cell at 40(3) GPa. The crystal structure of Ba[HCO][HCO][HCO][HCO] was determined by synchrotron single crystal X-ray diffraction. The experiments were complemented by DFT-based calculations.

View Article and Find Full Text PDF

Incommensurately modulated structure of ZnSiO(OH)·HO at high pressure.

IUCrJ

January 2025

Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland.

High-resolution single-crystal X-ray diffraction experiments on ZnSiO(OH)·HO hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group Pnn2(0, β, 0)000.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!