The dynamic effects of low-frequency biasing on spontaneous otoacoustic emissions (SOAEs) were studied in human subjects under various signal conditions. Results showed a combined suppression and modulation of the SOAE amplitudes at high bias tone levels. Ear-canal acoustic spectra demonstrated a reduction in SOAE amplitude and growths of sidebands while increasing the bias tone level. These effects varied depending on the relative strength of the bias tone to a particular SOAE. The SOAE magnitudes were suppressed when the cochlear partition was biased in both directions. This quasi-static modulation pattern showed a shape consistent with the first derivative of a sigmoid-shaped nonlinear function. In the time domain, the SOAE amplitudes were modulated with the instantaneous phase of the bias tone. For each biasing cycle, the SOAE envelope showed two peaks each corresponded to a zero crossing of the bias tone. The temporal modulation patterns varied systematically with the level and frequency of the bias tone. These dynamic behaviors of the SOAEs are consistent with the shifting of the operating point along the nonlinear transducer function of the cochlea. The results suggest that the nonlinearity in cochlear hair cell transduction may be involved in the generation of SOAEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637524 | PMC |
http://dx.doi.org/10.1121/1.2821983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!