This paper describes a new water-insoluble molybdenum compound that has been developed as a slow-release fertilizer. The compound is an inorganic polymer formed by inclusion of molybdenum within a long-chain polyphosphate structure. It was designed by a process of "reverse engineering" of the molecule. Synthesis involved reaction of phosphoric acid with magnesium oxide, molybdenum trioxide, and sodium carbonate at 275 degrees C. Kinetics of reaction revealed complex multistage processes. X-ray diffraction patterns showed a crystalline nature with short-range as well as long-range ordering. The magnesium sodium polymolybdophosphate had ideal slow-release characteristics; it had low water solubility and high citrate solubility and was powdery, free flowing, and nonhygroscopic. Field testing showed an 80% increase in yield of green gram at a low dose of 0.04 kg/ha Mo. Nodulation increased by over 161%, and N content of gram increased by 20%. The slow-release fertilizer would provide an effective, low-cost, and environmentaly friendly alternative to Mo fertilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf072878gDOI Listing

Publication Analysis

Top Keywords

slow-release fertilizer
8
slow-releasing molybdenum
4
molybdenum fertilizer
4
fertilizer paper
4
paper describes
4
describes water-insoluble
4
water-insoluble molybdenum
4
molybdenum compound
4
compound developed
4
developed slow-release
4

Similar Publications

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Micronutrient Seed Coatings of Layered Double Hydroxides Overcome Seedling Toxicity and Improve Micronutrient Uptake in Comparison with Soluble Micronutrient Coatings.

J Agric Food Chem

January 2025

Department of Earth and Environmental Science, Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B3001 Heverlee, Belgium.

Zinc (Zn), boron (B), and molybdenum (Mo) are micronutrients, essential to crops, which can be efficiently applied to crops via seed coatings. However, fast micronutrient release from soluble seed coatings brings seedling toxicity risks. Hence, this study developed novel Zn-B-Mo slow-release seed coating compounds, i.

View Article and Find Full Text PDF

The wastewater treatment plants (WWTPs) must be transformed into Water Resource Recovery Facilities (WRRFs) in view of a more sustainable approach focusing on the circular economy concept. Different to WWTPs, the WRRFs have as a major goal not only the wastewater treatment to meet the legislation limits but also the recovery of resources such as: treated water for water reuse, carbon, nutrients, biopolymers etc. In view of boosting the WRRFs application in the real WWTs, a WRRF at Palermo University (UNIPA) has been built within the EU project: Achieving Wider-Uptake of Water Smart Solutions.

View Article and Find Full Text PDF

Coal-bearing kaolinite-based plant growth-promoting fertilizer with integrated slow-release and water-retention properties.

Sci Total Environ

January 2025

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

The development of ecological fertilizers has become crucial in modern agriculture due to the increasing global population and diminishing arable land resources. Herein, a plant growth-promoting fertilizer (UKS) with dual functions of slow-release and water-retention was prepared by combining liquid-phase intercalation method and crosslinking gel method. The physicochemical properties of UKS were analyzed and its dissolution, slow-release, and water-retention properties were systematically evaluated.

View Article and Find Full Text PDF

Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!