Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity.

Acta Biotheor

Laboratoire de Microbiologie, Géochimie et Ecologie Marines (UMR CNRS 6117), Centre d'Océanologie de Marseille, Université de la Méditerranée, Campus de Luminy, Case 901, Marseille Cedex 9 13288, France.

Published: June 2008

The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10441-008-9033-1DOI Listing

Publication Analysis

Top Keywords

oxygen heterogeneity
12
diffusive oxygen
12
oxygen
9
sediment heterogeneity
8
sediment oxygen
8
oxygen flux
8
sediment
5
heterogeneity
5
imaging oxygen
4
oxygen distribution
4

Similar Publications

Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

Sustained Tl(I) removal by α-MnO: Dual role of tunnel structure incorporation and surface catalytic oxidation.

J Hazard Mater

January 2025

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.

Article Synopsis
  • Manganese oxide-based filtration is an effective, cost-efficient method for removing thallium from engineered systems, although there are gaps in understanding its long-term effectiveness.
  • α-MnO demonstrated a high potential for thallium removal, showing a significant increase in irreversible removal rates (81%-95%) over a 584-hour period under various conditions.
  • The study reveals critical mechanisms, such as the oxidation of thallium, driven by surface Mn(III)-O interactions, highlighting how different environmental factors influence thallium binding and removal effectiveness in manganese oxide systems.
View Article and Find Full Text PDF

Prone positioning is a therapeutic strategy for severe Acute Respiratory Distress Syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!