We report here the results of human olfactory receptor (OR) 17-40 stimulation with some odorants probed by means of the double-channel surface plasmon resonance platform NanoSPR-6. OR 17-40 tagged with N-terminal cmyc sequence was heterologously co-expressed with Galpha(olf) protein in yeast, and receptor-carrying nanosomes were prepared from yeast membrane fraction. Then, receptors were specifically captured via anti-cmyc antibody attached to the gold-coated substrate in orientated or random way. Measurement of odorants effects were carried out in the presence of GTP-gamma-S in differential mode in order to compensate bulk changes of refractive index. For the first time, biosensing efficiency of olfactory films was discussed in terms of their thickness and Galpha(olf) accessibility to GTP-gamma-S. Bell-shaped response profile with two maxima (near 1 nM and near 1 microM) was established for helional, which is documented as highly specific agonist of OR 17-40. Unrelated odorant heptanal used as control, did not evoke significant variations of differential signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-008-0272-5 | DOI Listing |
J Neurosci
January 2025
Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Odor perception plays a critical role in early human development, but the underlying neural mechanisms are not fully understood. To investigate these, we presented appetitive and aversive odors to infants of both sexes at one month of age while recording functional magnetic resonance imaging (fMRI) and nasal airflow data. Infants slept during odor presentation to allow MRI scanning.
View Article and Find Full Text PDFStroke
February 2025
Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing (K.W.C., C.L., Z.L., M.R., H.C.).
Background: Poor olfaction may be associated with adverse cerebrovascular events, but empirical evidence is limited. We aimed to investigate the association of olfaction with the risk of stroke in the Atherosclerosis Risk in Communities Study.
Methods: We included 5799 older adults with no history of stroke at baseline from 2011 to 2013 (75.
Heliyon
January 2025
Department of Pulmonary, Vitkovice Hospital, Ostrava, Czech Republic.
Introduction: The use of signal dogs for cancer detection is not yet routinely performed,but dogs and their powerful olfactory system have proven to be a unique and valuable tool for many lineages and are beginning to be incorporated into medical practice. This method has great advantages; the dog can detect a tumour in the human body already in preclinical stages, when the patient has no symptoms yet. The identification of cancer biomarkers to enable early diagnosis is a need for many types of cancer, whose prognosis is strongly dependent on the stage of the disease.
View Article and Find Full Text PDFNutrients
January 2025
Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
Background/objectives: Dysgeusia contributes to malnutrition and worsens the quality of life of patients with cancer. Despite the different strategies, there is no effective treatment for patients suffering from taste disorders provided by the pharmaceutical industry. Therefore, we developed a novel strategy for reducing side effects in cancer patients by providing a novel food supplement with the taste-modifying glycoprotein miraculin, which is approved by the European Union, as an adjuvant to medical-nutritional therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!