The incidence of malignant melanoma is increasing at an alarming rate. As the clinical outcome of the disease strongly depends on the localization of the lesion, early detection at the initial stages of development is critical. Here, we suggest spatial characterization of melanoma based on the presence of endogenous stable free radicals in melanin pigments. Taking into account the abundance of these naturally occurring free radicals in proliferating melanocytes and their localization pattern, we hypothesized that electron paramagnetic resonance (EPR) imaging could be a unique tool for mapping melanomas with high sensitivity and high resolution. The potential of EPR to image melanoma samples was demonstrated in vitro in animal and human samples. Using EPR systems operating at low frequency, we were also able to record in vivo EPR spectra and images from the melanin present in a subcutaneous melanoma implanted in a mouse. In addition to the proof-of-concept and the achievement of providing the first non-invasive image of an endogenous radical, this technology may represent a key advance in improving the diagnosis of suspected melanoma lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!