Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis.

J Opt Soc Am A Opt Image Sci Vis

State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China.

Published: February 2008

Principal component analysis (PCA) is widely used to reconstruct the spectral reflectance of surface colors. However, the estimated spectral accuracy is low when using only one set of three principal components for three-channel color-acquisition devices. In this study, the spectral space was first divided into 11 subgroups, and the principal components were calculated for individual subgroups. Then the principal components were further extended from three to nine through the residual spectral error of the reflectance in each subgroup. For each target sample, the extended principal components of the corresponding subgroup samples were used in the common PCA method to reconstruct the spectral reflectance. The results show that this proposed method is quite accurate and outperforms other related methods.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.25.000371DOI Listing

Publication Analysis

Top Keywords

principal components
20
spectral reflectance
12
spectral space
8
principal component
8
component analysis
8
reconstruct spectral
8
subgroups principal
8
principal
7
spectral
6
components
5

Similar Publications

Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.

View Article and Find Full Text PDF

Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities.

View Article and Find Full Text PDF

UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract.

J Food Sci

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.

The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).

View Article and Find Full Text PDF

Introduction: Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP.

View Article and Find Full Text PDF

Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!