Study Design: An in vivo rat model of disc degeneration with emphasis on characterizing acute and chronic cytokine production.
Objective: To compare the morphologic and proinflammatory response between a single and triple-stab injury in attempts to establish mechanisms of chronic disc inflammation.
Summary Of Background Data: The features that distinguish physiologic (asymptomatic) from pathologic (symptomatic) degeneration are unclear. Epidemiologic evidence suggests that cumulative damage and elevated disc cytokine levels may be linked to increased low back pain rates. Although acute injury stimulates a healing response that includes transient cytokine production, repetitive damage may be necessary to trigger the persistent inflammation suspected to underlie chronic pain.
Methods: Tail discs were exposed surgically and stabbed with a number 11 blade. During the subsequent acute healing phase, triple-stab discs were percutaneously injured with a 23-gauge needle at day 3 and then again at day 6 after the initial blade incision. Cytokine (IL-1 beta, IL-6, IL-8, and TNF-alpha) production was quantified using enzyme linked immunosorbent assay, and, in addition to MAPK signaling pathways (phosphorylated forms of ERK, JNK, and p38), was localized by immunohistochemistry. Disc architecture was evaluated using histology.
Results: Both single-stab and triple-stab discs degenerated with time, yet degeneration was more severe with repeated injury where nuclear proteoglycan was replaced by disorganized collagen. Four days after single-stab, there was a transient peak in IL-1 beta and IL-8 production that was localized to the wound track and associated granulation tissue. By contrast, triple-stab induced an activated annular fibroblast phenotype (p38 positive) that caused a prolonged, diffuse inflammatory response with elevated levels of TNF-alpha, IL-1 beta, and IL-8 up to 28 days after injury. Disc inflammation was accompanied by reactive changes in the adjacent vertebral marrow spaces that was initially lytic at day 4, becoming sclerotic by day 56.
Conclusion: Our results demonstrate that repeated injury during active healing leads to persistent inflammation and enhanced disc degeneration. These data support the premise that damage accumulation and its associated inflammation may distinguish pathologic from physiologic disc degeneration. In the future, this triple-stab model may be useful to evaluate the efficacy of anti-inflammatory low back pain treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0b013e31815b9850 | DOI Listing |
F1000Res
January 2025
Department of Nephrology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 575001, India.
Background: We evaluated if the course of recovery from sepsis-induced acute kidney injury (AKI) can be predicted using variables collected at admission.
Methods: A total of 63 patients admitted for sepsis-induced AKI in our Mangalore ICU were evaluated and baseline demographic and clinical/laboratory parameters, including serum creatinine (SCr), base excess (BE), Plethysmographic Variability Index (PVI), Caval Index, R wave variability index (RVI), mean arterial pressure (MAP) and renal resistivity index (RI) using renal doppler and need for inotropes were assessed on admission. Patients were managed as per standard protocol.
Sci Rep
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
Inflammatory diseases are often chronic and recurrent, and current treatments do not typically remove underlying disease drivers. T cells participate in a wide range of inflammatory diseases such as psoriasis, Crohn's disease, oesophagitis and multiple sclerosis, and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence, in part by forming persistent pathogenic memory. Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China. Electronic address:
Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
November 2024
From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida.
Background: Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!