We developed stromal- and epithelial-specific cre-transgenic mice to directly visualize epithelial-mesenchymal transition (EMT) during cancer progression in vivo. Using three different oncogene-driven mouse mammary tumor models and cell-fate mapping strategies, we show in vivo evidence for the existence of EMT in breast cancer and show that myc can specifically elicit this process. Hierarchical cluster analysis of genome-wide loss of heterozygosity reveals that the incidence of EMT in invasive human breast carcinomas is rare, but when it occurs it is associated with the amplification of MYC. These data provide the first direct evidence for EMT in breast cancer and suggest that its development is favored by myc-initiated events.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2148DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
direct evidence
8
emt breast
8
evidence epithelial-mesenchymal
4
epithelial-mesenchymal transitions
4
breast
4
transitions breast
4
cancer
4
cancer developed
4
developed stromal-
4

Similar Publications

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

Purpose: To evaluate the prognostic significance of changes in pre- and post-neoadjuvant chemotherapy (NACT) Ki67 in patients with primary invasive triple-negative breast cancer (TNBC).

Methods: Population-based registry data were retrieved for patients diagnosed with TNBC between 2007 and 2021 (n = 9262). Multivariable Cox regression analysis was performed for disease-specific survival (DSS) and overall survival (OS) adjusted for age and residual disease in the breast and nodes (RDBN).

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!