As human colorectal cancer (CRC) cells metastasize to distant sites, they are susceptible to detachment-induced cell death or anoikis - a form of apoptosis that occurs when anchorage-dependent CRC cells go into suspension. Our goal was to identify whether tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL) receptors mediate anoikis in human CRC cells. First, we assessed whether caspases of the extrinsic (caspase-8) or intrinsic (caspase-9) death pathways were involved. Caspase-8 was cleaved during exposure to suspension culture in four CRC lines, and cell death was inhibited by caspase-3 and caspase-8 inhibitors but not by a caspase-9 inhibitor. Gene transcripts in macrophage inflammatory protein-101 (MIP-110), a weakly metastatic human CRC, were increased at least 2-fold for TRAIL-R2 (DR5) and TRAIL after 24 h of suspension culture compared with cells in monolayer culture. The increased expression of DR5 was confirmed at the protein level at 24 h, and exposure of MIP-101 cells to an antagonistic antibody to DR5 decreased caspase-8 activation. The antagonistic antibody to DR5 inhibited anoikis in four human CRC lines. Treatment with an antagonistic DR4 antibody or a neutralizing antibody to TRAIL ligand did not reduce anoikis consistently. Knockdown of DR5 or TRAIL also inhibited anoikis, whereas exogenous TRAIL or FasL did not consistently increase anoikis. In summary, DR5 receptor mediates death signals for anoikis in human CRC cells through the extrinsic apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-06-1806 | DOI Listing |
Pharmaceutics
November 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
FASEB J
January 2025
Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Double C-2 Like Domain Beta (DOC2B) located at 17q13.3 prevents metastasis by senescence induction and epithelial to mesenchymal transition inhibition in cervical cancer (CC). The extracellular vesicle (EV) mediated trafficking of DOC2B and its impact on tumor suppressive activity are not investigated in CC.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.
The continuous rise in skin cancer incidence highlights an imperative for improved skin cancer prevention. Topical calcipotriol-plus-5-fluorouracil (calcipotriol-plus-5-FU) immunotherapy effectively eliminates precancerous skin lesions and prevents squamous cell carcinoma (SCC) in patients. However, its mechanism of action remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!