Metastatic melanoma represents a complex and heterogeneous disease for which there are no therapies to improve patient survival. Recent expression profiling of melanoma cell lines identified two transcription signatures, respectively, corresponding with proliferative and invasive cellular phenotypes. A model derived from these findings predicts that in vivo melanoma cells may switch between these states. Here, DNA microarray-characterized cell lines were subjected to in vitro characterization before s.c. injection into immunocompromised mice. Tumor growth rates were measured and postexcision samples were assessed by immunohistochemistry to identify invasive and proliferative signature cells. In vitro tests showed that proliferative signature melanoma cells are faster growing but less motile than invasive signature cells. In vivo proliferative signature cells initiated tumor growth in 14 +/- 3 days postinjection. By comparison, invasive signature cells required a significantly longer (P < 0.001) period of 59 +/- 11 days. Immunohistochemistry showed that regardless of the seed cell signature, tumors showed evidence for both proliferative and invasive cell types. Furthermore, proliferative signature cell types were detected most frequently in the peripheral margin of growing tumors. These data indicate that melanoma cells undergo transcriptional signature switching in vivo likely regulated by local microenvironmental conditions. Our findings challenge previous models of melanoma progression that evoke one-way changes in gene expression. We present a new model for melanoma progression that accounts for transcription signature plasticity and provides a more rational context for explaining observed melanoma biology.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2491DOI Listing

Publication Analysis

Top Keywords

melanoma cells
16
proliferative signature
16
signature cells
16
proliferative invasive
12
melanoma
9
signature
9
cells
8
cell lines
8
tumor growth
8
invasive signature
8

Similar Publications

Co-Delivery of Dacarbazine and miRNA 34a Combinations to Synergistically Improve Malignant Melanoma Treatments.

Drug Des Devel Ther

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Purpose: The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM.

Methods: To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block.

View Article and Find Full Text PDF

Steatohepatitis-induced vascular niche alterations promote melanoma metastasis.

Cancer Metab

January 2025

Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany.

Background: In malignant melanoma, liver metastases significantly reduce survival, even despite highly effective new therapies. Given the increase in metabolic liver diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), this study investigated the impact of liver sinusoidal endothelial cell (LSEC)-specific alterations in MASLD/MASH on hepatic melanoma metastasis.

Methods: Mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for ten weeks to induce MASH-associated liver fibrosis, or a CDAA diet or a high fat diet (HFD) for shorter periods of time to induce early steatosis-associated alterations.

View Article and Find Full Text PDF

The lymphatic system plays complex, often contradictory, roles in many cancers, including melanoma; these roles include contributions to tumor cell metastasis and immunosuppression in the tumor microenvironment as well as generation of antitumor immunity. Advancing our understanding of lymphatic vessel involvement in regulating tumor growth and immune response may provide new therapeutic targets or treatment plans to enhance the efficacy of existing therapies. We utilized a syngeneic murine melanoma model in which we surgically disrupted the lymphatic vessel network draining from the tumor to the tumor-draining lymph node (TDLN) while leaving the TDLN intact.

View Article and Find Full Text PDF

Individualized Neoantigen-Directed Melanoma Therapy.

Am J Clin Dermatol

January 2025

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens.

View Article and Find Full Text PDF

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!