A method for analysis of volatile organic compounds (VOCs) from microbial cultures was established using proton transfer reaction-mass spectrometry (PTR-MS). A newly developed sampling system was coupled to a PTR-MS instrument to allow on-line monitoring of VOCs in the dynamic headspaces of microbial cultures. The novel PTR-MS method was evaluated for four reference organisms: Escherichia coli, Shigella flexneri, Salmonella enterica, and Candida tropicalis. Headspace VOCs in sampling bottles containing actively growing cultures and uninoculated culture medium controls were sequentially analyzed by PTR-MS. Characteristic marker ions were found for certain microbial cultures: C. tropicalis could be identified by several unique markers compared with the other three organisms, and E. coli and S. enterica were distinguishable from each other and from S. flexneri by specific marker ions, demonstrating the potential of this method to differentiate between even closely related microorganisms. Although the temporal profiles of some VOCs were similar to the growth dynamics of the microbial cultures, most VOCs showed a different temporal profile, characterized by constant or decreasing VOC levels or by single or multiple peaks over 24 h of incubation. These findings strongly indicate that the temporal evolution of VOC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted. Our study may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292582PMC
http://dx.doi.org/10.1128/AEM.02069-07DOI Listing

Publication Analysis

Top Keywords

microbial cultures
16
on-line monitoring
8
proton transfer
8
transfer reaction-mass
8
reaction-mass spectrometry
8
marker ions
8
voc emissions
8
microbial
6
vocs
6
cultures
5

Similar Publications

Article Synopsis
  • Pseudomonas aeruginosa is problematic in healthcare due to its high antibiotic resistance, highlighting the need for new antimicrobial solutions.
  • A study focused on isolating a new bacteriocin from Enterococcus faecium found in stool samples, which showed promise against multidrug-resistant P. aeruginosa.
  • The purified bacteriocin, enterocin GH, demonstrated significant antibacterial and antibiofilm activity against P. aeruginosa, outperforming controls in laboratory tests.
View Article and Find Full Text PDF

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea).

BMC Microbiol

January 2025

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.

The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition).

View Article and Find Full Text PDF

Background: Tuberculosis (TB) is a global problem that seriously jeopardizes human health. Among them, the diagnosis and treatment of smear- or culture-negative TB patients is a challenge. The Xpert MTB/RIF (Xpert) assay has been reported to be a novel molecular diagnostic tool for rapidly detecting TB.

View Article and Find Full Text PDF

Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol.

Bioresour Technol

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!