Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An innovative neuro-fuzzy network appropriate for fault detection and classification in a machinery condition health monitoring environment is proposed. The network, called an incremental learning fuzzy neural (ILFN) network, uses localized neurons to represent the distributions of the input space and is trained using a one-pass, on-line, and incremental learning algorithm that is fast and can operate in real time. The ILFN network employs a hybrid supervised and unsupervised learning scheme to generate its prototypes. The network is a self-organized structure with the ability to adaptively learn new classes of failure modes and update its parameters continuously while monitoring a system. To demonstrate the feasibility and effectiveness of the proposed network, numerical simulations have been performed using some well-known benchmark data sets, such as the Fisher's Iris data and the Deterding vowel data set. Comparison studies with other well-known classifiers were performed and the ILFN network was found competitive with or even superior to many existing classifiers. The ILFN network was applied on the vibration data known as Westland data set collected from a U.S. Navy CH-46E helicopter test stand, in order to assess its efficiency in machinery condition health monitoring. Using a simple fast Fourier transform (FFT) technique for feature extraction, the ILFN network has shown promising results. With various torque levels for training the network, 100% correct classification was achieved for the same torque Levels of the test data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/3477.938258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!