Computing complex spiking artificial neural networks (SANNs) on conventional hardware platforms is far from reaching real-time requirements. Therefore we propose a neuro-processor, called NeuroPipe-Chip, as part of an accelerator board. In this paper, we introduce two new concepts on chip-level to speed up the computation of SANNs. These concepts are implemented in a prototype of the NeuroPipe-Chip. We present the hardware structure of the prototype and evaluate its performance in a system simulation based on a hardware description language (HDL). For the computation of a simple SANN for image segmentation, the NeuroPipe-Chip operating at 100 MHz shows an improvement of more than two orders of magnitude compared to an Alpha 500 MHz workstation and approaches real-time requirements for the computation of SANNs in the order of 10(6) neurons. Hence, such an accelerator would allow for applications of complex SANNs to solve real-world tasks like real-time image processing. The NeuroPipe-Chip has been fabricated in an Alcatel 0.35-mum digital CMOS technology.

Download full-text PDF

Source
http://dx.doi.org/10.1109/72.977304DOI Listing

Publication Analysis

Top Keywords

neural networks
8
real-time requirements
8
computation sanns
8
neuropipe-chip
5
neuropipe-chip digital
4
digital neuro-processor
4
neuro-processor spiking
4
spiking neural
4
networks computing
4
computing complex
4

Similar Publications

Physics-driven deep learning (PD-DL) methods have gained popularity for improved reconstruction of fast MRI scans. Though supervised learning has been used in early works, there has been a recent interest in unsupervised learning methods for training PD-DL. In this work, we take inspiration from statistical image processing and compressed sensing (CS), and propose a novel convex loss function as an alternative learning strategy.

View Article and Find Full Text PDF

Artificial Intelligence (AI) is rapidly transforming healthcare, particularly in orthopedics, by enhancing diagnostic accuracy, surgical planning, and personalized treatment. This review explores current applications of AI in orthopedics, focusing on its contributions to diagnostics and surgical procedures. Key methodologies such as artificial neural networks (ANNs), convolutional neural networks (CNNs), support vector machines (SVMs), and ensemble learning have significantly improved diagnostic precision and patient care.

View Article and Find Full Text PDF

Background: Heart failure should be diagnosed as early as possible. Although deep learning models can predict one or more echocardiographic findings from electrocardiograms (ECGs), such analyses are not comprehensive.

Objectives: This study aimed to develop a deep learning model for comprehensive prediction of echocardiographic findings from ECGs.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) substrates are garnering increasing interest for ultrasensitive high-throughput sensing. Notably, SERS-encoded nanostructures stand out due to their potential for nearly unlimited codification with excellent optical properties. In this paper we report a simple, versatile and cost-effective method for preparing SERS-encoded clusters.

View Article and Find Full Text PDF

Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!