The gas sensing properties of organic polypyrrole (PPS) film, deposited onto LiNbO(3) substrate by Langmuir-Blodgett (LB) technique, have been monitored by surface acoustic wave (SAW) delay lines and studied with respect to sensitivity, selectivity, response time, stability, repeatability, and aging. The SAW PPy elements demonstrate high sensitivity toward NH(3) gas with high selectivity against CH(4), CO, H(2), and O(2). The detectable threshold concentration has been estimated as 20 ppm NH(3) in air; the response time is in the 10s range, and the recovery time is about 15 min; the repeatability of the SAW response toward eight sequential NH(3) gas exposures is within 6%; the aging of the PPy film is within 4% over a month; and the effect of humidity on SAW NH(3) gas response is negligible for the typical conditions at room ambient air. Partially reversible SAW response recognizing NH(3) gas as one component of an interfering gases-mixture has been observed. Simultaneous chemoresponses of SAW phase and insertion loss have been performed in order to investigate the sensing mechanisms. By merging with electrical conductivity gas response, the dominant SAW sensing effects for NH(3 ) gas detection are defined as elastic loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/58.726434 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!