Two-dimensional temperature estimation using diagnostic ultrasound.

IEEE Trans Ultrason Ferroelectr Freq Control

Dept. of Electr. Eng. and Comput. Sci., Michigan Univ., Ann Arbor, MI.

Published: October 2012

A two-dimensional temperature estimation method was developed based on the detection of shifts in echo location of backscattered ultrasound from a region of tissue undergoing thermal therapy. The echo shifts are due to the combination of the local temperature dependence of speed of sound and thermal expansion in the heated region. A linear relationship between these shifts and the underlying tissue temperature rise is derived from first principles and experimentally validated. The echo shifts are estimated from the correlation of successive backscattered ultrasound frames, and the axial derivative of the accumulated echo shifts is shown to be proportional to the temperature rise. Sharp lateral gradients in the temperature distribution introduce ripple on the estimates of the echo shifts due to a thermo-acoustic lens effect. This ripple can be effectively reduced by filtering the echo shifts along the axial and lateral directions upon differentiation. However, this is achieved at the expense of spatial resolution. Experimental evaluation of the accuracy (0.5 degrees C) and spatial resolution (2 mm) of the algorithm in tissue mimicking phantoms was conducted using a diagnostic ultrasound imaging scanner and a therapeutic ultrasound unit. The estimated temperature maps were overlaid on the gray-scale ultrasound images to illustrate the applicability of this technique for image guidance of focused ultrasound thermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/58.710592DOI Listing

Publication Analysis

Top Keywords

echo shifts
20
two-dimensional temperature
8
temperature estimation
8
diagnostic ultrasound
8
backscattered ultrasound
8
thermal therapy
8
temperature rise
8
spatial resolution
8
ultrasound
7
shifts
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!