Etiological and molecular studies on the sporadic form of Alzheimer's disease have yet to determine the underlying mechanisms of neurodegeneration. Hyperhomocysteinemia is associated with Alzheimer's disease, and has been hypothesized to promote neurodegeneration, by inhibiting brain methylation activity. The aim of this work was to determine whether a combined folate, B12 and B6 dietary deficiency, would induce amyloid-beta overproduction, and to study the mechanisms linking vitamin deficiency, hyperhomocysteinemia and amyloidogenesis in TgCRND8 and 129Sv mice. We confirmed that B-vitamin deprivation induces hyperhomocysteinemia and imbalance of S-adenosylmethionine and S-adenosylhomocysteine. This effect was associated with PS1 and BACE up-regulation and amyloid-beta deposition. Finally, we detected intraneuronal amyloid-beta and a slight cognitive impairment in a water maze task at a pre-plaque age, supporting the hypothesis of early pathological function of intracellular amyloid. Collectively, these findings are consistent with the hypothesis that abnormal methylation in association with hyperhomocysteinemia may contribute to Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2007.12.018DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
b-vitamin deprivation
8
deprivation induces
8
induces hyperhomocysteinemia
8
ps1 bace
8
amyloid-beta deposition
8
hyperhomocysteinemia
5
hyperhomocysteinemia brain
4
brain s-adenosylhomocysteine
4
s-adenosylhomocysteine depletes
4

Similar Publications

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!