Hsp90 is an attractive chemotherapeutic target because it is essential to maturation of multiple oncogenes. We describe the conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin isolated from Streptomyces sp. Their native free structures are similar to the active form of geldanamycin bound to Hsp90 protein. Their conformational character is a probable reason for their high-affinity binding. Lack of toxic benzoquinone in EH21A1-A4 also adds to their potential as lead compounds for anti-tumor drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.01.072DOI Listing

Publication Analysis

Top Keywords

conformational significance
8
significance eh21a1-a4
8
eh21a1-a4 phenolic
8
phenolic derivatives
8
derivatives geldanamycin
8
geldanamycin hsp90
4
hsp90 inhibitory
4
inhibitory activity
4
activity hsp90
4
hsp90 attractive
4

Similar Publications

Evaluating Forelimb and Hindlimb Joint Conformation of Morna Racehorses ().

Vet Sci

January 2025

Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR 523808, China.

Measuring limb joint angles is crucial for understanding horse conformation, performance, injury diagnosis, and prevention. While Thoroughbred horses have been extensively studied, local Pakistani breeds (e.g.

View Article and Find Full Text PDF

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Biosensors (Basel)

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation.

View Article and Find Full Text PDF

Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes.

Biosensors (Basel)

January 2025

School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK.

G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities.

View Article and Find Full Text PDF

-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.

View Article and Find Full Text PDF

Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!