Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation.

Int J Pharm

Pharmaceutical and Analytical Research & Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States.

Published: May 2008

The solid state properties of solid dispersions of Compound A in hypromellose acetate succinate (HPMC-AS) prepared by hot-melt extrusion (HME) and solvent co-precipitation (CP) processes were evaluated using powder X-ray diffractometry (PXRD), thermal analysis, optical microscopy, scanning electron microscopy (SEM), FT-IR and Raman spectroscopy, water vapor sorption analyzer, and surface area by BET. PXRD indicated that both processes converted the crystalline drug into amorphous solid dispersions with a glass transition temperature around 104-107 degrees C and both products have similar spectroscopic and hygroscopic properties. The two products have similar true densities; however, the CP product is more porous and has a larger specific surface area than the HME product, as indicated by the BET results and SEM micrographs. Dissolution study using USP apparatus 2 showed that the CP product had a faster dissolution profile, but slower intrinsic dissolution rate than the HME product. The two products have acceptable physical stability after storage in 40 degrees C/75% RH chamber for 3 months. However, the HME product is more stable than the CP product in aqueous suspension formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2007.12.017DOI Listing

Publication Analysis

Top Keywords

solid dispersions
12
hme product
12
solid state
8
state properties
8
properties solid
8
prepared hot-melt
8
hot-melt extrusion
8
solvent co-precipitation
8
surface area
8
product
6

Similar Publications

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Purpose: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new cancer treatment modality that employs radium-224-loaded metal sources implanted in solid tumors to disperse alpha-emitting atoms within a therapeutic "kill-zone" of a few millimeters around each source. Preclinical studies have demonstrated tumor growth delay in various cancer types, including glioblastoma multiforme, and the method is used in clinical trials for patients with skin and head and neck cancer. This study aims to assess the safety and feasibility of implementing Alpha DaRT for brain tumor treatment in a large animal model.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

Waterfalls are anomalies in the angle-resolved photoemission spectrum where the energy-momentum dispersion is almost vertical, and the spectrum strongly smeared out. These anomalies are observed at relatively high energies, among others, in superconducting cuprates and nickelates. The prevalent understanding is that they originate from the coupling to some boson, with spin fluctuations and phonons being the usual suspects.

View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!