Tripping over obstacles has been reported as one of the most frequent causes of falls in the elderly. Maintenance of the body's balance and precise swing foot control is essential for successful obstacle-crossing. The aim of this study was thus to investigate the height and age effects on the center of mass (COM) and center of pressure (COP) inclination angles and angular velocities during obstacle-crossing. Ten healthy young and 15 healthy older adults were recruited to walk and cross obstacles of heights of 10%, 20% and 30% of their leg lengths. The COM and COP position data were calculated using data measured from a three-dimensional (3D) motion analysis system and forceplates. Smaller medial COM-COP inclination angles were found in the older group, suggesting that the neuromusculoskeletal system may have more room to control the swing foot with sufficient foot clearance. Decreased inclination angles with increasing obstacle height suggest that the subjects tended to keep their COM position close to the COP position to increase the body's stability. Greater anterior inclination angular velocities were found in the older group to maintain the same inclination angles as the young. Not only inclination angles, but also COM-COP angular velocity, were useful for assessing one's ability to control the body's dynamic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2007.12.005DOI Listing

Publication Analysis

Top Keywords

inclination angles
24
effects center
8
center mass
8
mass center
8
center pressure
8
swing foot
8
angular velocities
8
cop position
8
older group
8
inclination
7

Similar Publications

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Purpose: The dynamic alignment of the lumbar spine, pelvis and femur is increasingly studied in hip preservation surgery. However, the interaction between lumbopelvic alignment, acetabular and femoral morphology and its influence on patients' preoperative symptom burden remains poorly understood. The aim of this study was to evaluate whether lumbopelvic malalignment affects osseous hip morphology and exacerbates preoperative patient-reported joint functionality in patients undergoing periacetabular osteotomy (PAO).

View Article and Find Full Text PDF

Pneumatic impactor is widely used in the drilling process of various medium and high hard rocks with poor drill ability. Currently, there is relatively little analysis on the impact of the inclination of the rock surface during the drilling process on the drilling efficiency and excavation capability of pneumatic impactors. Based on the dynamic theory of impact drilling and finite element method (FEM), the constitutive model of HJC criterion and INVENTOR 3D mechanical structure design software, a 3D numerical analysis system of piston-bit head-rock during pneumatic impactor drilling is established by ANSYS LS-DYNA, a nonlinear dynamic analysis software.

View Article and Find Full Text PDF

Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15).

View Article and Find Full Text PDF

Neck pain is a widespread problem in society with many variables influencing its cause. The angle of the hip may influence the kinematics of the neck in addition to the myoelectrical activation of the surrounding musculature that contributes to the development of neck pain. The purpose of this study was to investigate the changes in spinal inclination angles and muscle activity in the neck using a 10 deg wedge in a forward slope, neutral and rear slope seated position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!