Psychrophiles produce cold-evolved enzymes that display a high catalytic efficiency, associated with a low thermal stability. In recent years, these enzymes have attracted the attention of scientists because of their peculiar properties that render them particularly useful in investigating the relationship existing between enzyme stability and flexibility on one hand, and enzyme activity on the other hand. Among these enzymes, the esterases, and particularly the feruloyl esterases, have potential uses over a broad range of applications in the agro-food industries. In recent years, the number of microbial feruloyl esterase activities has increased in the growing genome databases. Based on substrate utilization data and supported by primary sequence identity, four subclasses of esterase have been characterized so far. Up to the present, ten genomes from psychrophilic bacteria have been completely sequenced and additional fourteen genomes are under investigation. From the bacteria strains whose genome has been completely sequenced, we analyzed the presence of esterase genes, both the putative genes and the determined experimentally genes, and performed a ClustalW analysis for feruloyl esterases. Major details will be presented for the ORF PSHAa1385 from P. haloplanktis TAC125 that recently has been studied in our research group. In addition, the potential biotechnology applications of this class of enzymes will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2007.12.019 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.
Bioresour Technol
November 2024
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Feruloyl esterase (FAE) has been extensively studied for its crucial auxiliary effect in the biodegradation of lignocellulose. In this study, a FAE database including 15,293 amino acid sequences was established to gain a better understanding of rumen FAEs through multi-omics analysis. The higher expression level of rumen fungal FAEs over bacterial FAEs suggests that rumen fungi may have more important role in the lignocellulose degradation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China. Electronic address:
J Oleo Sci
November 2024
College of Food and Bioengineering, Zhengzhou University of Light Industry.
The potentially wide application of Phenolic acids (PAs) in industries was severely limited by their inadequate solubility and stability in polar/non-polar media. To overcome these limits, studies on the enzymatic esterification of PAs with glycerol were carried out to reach a yield of 95% of phenolic acid glycerols (PAGs) under the following reaction conditions: 1:150 molar ratio of PAs to glycerol; 25% of Lipozyme 435 relative to the weight of total substrates; 80°C, 500 rpm, 86.7 kPa and 10 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!