The mouse and human Ah receptor differ in recognition of LXXLL motifs.

Arch Biochem Biophys

Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 309A Life Sciences Building, University Park, PA 16802, USA.

Published: March 2008

The aryl hydrocarbon receptor (AhR) is a ligand inducible transcription factor that exhibits interspecies differences, with the human and mouse AhR C-terminal transactivation domain sharing only 58% amino acid sequence identity. The AhR has a transactivation domain comprised of proline/serine/threonine-rich, glutamine-rich, and acidic amino acid subdomains. A truncated mAhR and hAhR containing only the acidic subdomain displayed widely differing transactivation potentials. Whether the glutamine-rich subdomain of the mouse AhR and the human AhR differentially recruit LXXLL-motif coactivators was investigated. Transiently expressed GAL4 DNA binding domain (GAL4DBD)-LXXLL-motif fusion proteins were used to map the critical LXXLL binding sequence of the hAhR to amino acid residues 663-688. Several LXXLL-motif GAL4DBD fusion proteins dramatically differed in their ability to influence the transactivation potential of the mAhR and hAhR. These findings suggest that the human and mouse AhR may display differential recruitment of coactivators and hence may exhibit divergent regulation of target genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2293825PMC
http://dx.doi.org/10.1016/j.abb.2008.01.014DOI Listing

Publication Analysis

Top Keywords

mouse ahr
12
amino acid
12
human mouse
8
transactivation domain
8
mahr hahr
8
fusion proteins
8
ahr
6
mouse
4
mouse human
4
human receptor
4

Similar Publications

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling.

Biomed Pharmacother

January 2025

KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea. Electronic address:

Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms.

View Article and Find Full Text PDF

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

The Gut Microbiota-Xanthurenic Acid-Aromatic Hydrocarbon Receptor Axis Mediates the Anticolitic Effects of Trilobatin.

Adv Sci (Weinh)

January 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.

Current treatments for ulcerative colitis (UC) remain limited, highlighting the need for novel therapeutic strategies. Trilobatin (TLB), a naturally derived food additive, exhibits potential anti-inflammatory properties. In this study, a dextran sulfate sodium (DSS)-induced animal model is used to investigate the effects of TLB on UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!