Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields.

Neural Netw

Laboratory for Dynamics of Emergent Intelligence, RIKEN BSI, 2-1 Hirosawa, Wako Saitama 351-0198, Japan.

Published: July 2008

Many behavioural experiments have pointed out the important role played by the hippocampus in spatial navigation. This role was enlightened by the discovery of hippocampal cells in rodents firing only at very specific locations in an environment, the so-called 'place field'. Recently, it has been observed that one synapse upstream of the hippocampus, entorhinal cells fire when the rat is located at any of the vertices of grid fields covering the environment. Furthermore, it was reported that both hippocampal and entorhinal cells have firing activity modulated by the theta local field potential in term of theta phase precession. In a previous report, the authors suggested that the temporal code driven by theta phase precession should play an important role in the building of hippocampal place cells from entorhinal grid cells. Here, with the help of a simpler computational model, we further investigate the implications of our hypothesis. We demonstrate that the nonlinear nature of the shape of the phase precession predicts that place field location are slightly backward shifted according to the direction of the rat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2007.12.032DOI Listing

Publication Analysis

Top Keywords

phase precession
12
grid cells
8
hippocampal place
8
entorhinal cells
8
theta phase
8
cells
6
impact temporal
4
temporal coding
4
coding presynaptic
4
entorhinal
4

Similar Publications

Electrophysiological Insights into Alzheimer's Disease: A Review of Human and Animal Studies.

Neurosci Biobehav Rev

December 2024

Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.

This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.

View Article and Find Full Text PDF

ORACLE: An analytical approach for T, T, proton density, and off-resonance mapping with phase-cycled balanced steady-state free precession.

Magn Reson Med

December 2024

Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Purpose: To develop and validate a novel analytical approach simplifying , , proton density (PD), and off-resonance quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.

Theory And Methods: Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles.

View Article and Find Full Text PDF

The separation of diffraction effects from phase contrast is a major challenge for differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). The application of electron beam precession has previously been proven successful in homogenizing the direct beam and improving the imaging of both long-range electric and magnetic fields. However, magnetic STEM-DPC imaging performed in a low magnification (LM) STEM mode suffers from significant aberrations of the probe forming lens and the consequent impediment of small precession angles.

View Article and Find Full Text PDF

All-Optical Ultrafast Arbitrary Rotation of Hole Orbital Qubits with Direct Phase Control.

Phys Rev Lett

November 2024

State Key Laboratory of Extreme Photonics and Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Article Synopsis
  • The study focuses on achieving precise control of a quantum bit (qubit) within quantum dots, an important aspect for advancing photonic quantum information technologies.
  • Researchers have successfully demonstrated the ability to perform arbitrary rotations on a hole orbital qubit using short optical pulses, allowing for direct phase control.
  • This method utilizes a process called stimulated Raman transitions, enabling fine-tuned control over the angles of the Bloch vector, making orbital states in solid-state quantum emitters useful for fast quantum information processing.
View Article and Find Full Text PDF

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging enables imaging of scar/fibrosis and is a cornerstone of most CMR imaging protocols. CMR imaging can benefit from image acceleration; however, image acceleration in LGE remains challenging due to its limited signal-to-noise ratio. In this study, we sought to evaluate a rapid 2D LGE imaging protocol using a generative artificial intelligence (AI) algorithm with inline reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!