The aim of the study was to investigate whether repetitive/temporal hypoxia up-regulated P-glycoprotein (P-gp) in cultured rat brain microvascular endothelial cells (rBMECs). Cultured rBMECs were used as in vitro blood brain barrier (BBB) model. Cells reached confluence were subjected to temporal hypoxic exposure. Under free-glucose cultured medium, the cells were covered by sterile paraffin oil for 15 min, inducing temporal hypoxic exposure. The hypoxic-exposure was carried out once every day up to 8 days, leading to the repetitive/temporal hypoxia in rBMECs. The cell viability was tested using CCK-8 kit, function and levels of P-gp in the cells were measured using rhodamine 123 uptake and western blot, respectively. It was found that 8-temporal hypoxic exposure induced 1.6-fold increase of P-gp level in cells, accompanied by decrease of cellular accumulation of rhodamine 123. Cellular accumulation of phenobarbital was also decreased. These findings indicated that repetitive/temporal hypoxia may be one of the factors resulting in P-gp overexpression in refractory epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2007.12.017 | DOI Listing |
Neurosci Lett
February 2008
Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
The aim of the study was to investigate whether repetitive/temporal hypoxia up-regulated P-glycoprotein (P-gp) in cultured rat brain microvascular endothelial cells (rBMECs). Cultured rBMECs were used as in vitro blood brain barrier (BBB) model. Cells reached confluence were subjected to temporal hypoxic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!