According to Hurford, PREDICATE (x) is correlated with deictic object variables during event perception. This claim is inconsistent with some core literature on the perception of motion events. We point out that the perception of events involves the activation of the modal properties and amodal properties of underlying event structure, for which Hurford's target article fails to account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0140525X03360078 | DOI Listing |
J Clin Med
December 2024
Hand and Occupational Therapy Outpatient Service Laborn, 80802 München, Germany.
: To assess the effects of a two-week course of intensive impairment-oriented arm rehabilitation for chronic stroke survivors on motor function. : An observational cohort study that enrolled chronic stroke survivors (≥6 months after stroke) with mild to severe arm paresis, who received a two-week course of impairment-oriented and technology-supported arm rehabilitation (1:1 participant-therapist setting), which was carried out daily (five days a week) for four hours. The outcome measures were as follows: the primary outcome was the arm motor function of the affected arm (mild paresis: BBT, NHPT; severe paresis: Fugl-Meyer arm motor score).
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, Queens University, Kingston, Canada.
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.
View Article and Find Full Text PDFSci Rep
January 2025
Huanggang Normal University, Huanggang, 438000, Hubei, ROC.
Perception of motion-in-depth is essential to guide and modify the hitting action in interceptive-dominated sports (e.g., tennis).
View Article and Find Full Text PDFPhys Biol
January 2025
Department of Biological Sciences, Tata Institute of Fundamental Research Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha road, Navy Nagar, Colaba, Mumbai-400005, INDIA, Mumbai, 400005, INDIA.
Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighbourhood rearrangements over short time and length scales. To address this, we propose the STIPS algorithm (Spatio Temporal Information on Pixel Subsets) to track these events by creating pixel subsets that link trajectories across frames.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!