Heterologous prime-boost vaccine strategies have generated high frequencies of antigen-specific T cells in preclinical and clinical trials of candidate HIV vaccines. We have developed a DNA (SAAVI DNA-C) and MVA (SAAVI MVA-C) vaccine based on HIV-1 subtype C for testing in clinical trials. Both vaccines contain five subtype C genes: gag, reverse transcriptase, tat, and nef, expressed as a polyprotein, and a truncated env (gp150). The individual vaccines induced CD8(+) and CD4(+) T cells specific for the vaccine-expressed antigens in BALB/c mice. Combining the vaccines in a DNA prime and MVA boost regimen increased the cumulative peptide response compared to the DNA vaccine alone 10-fold, to over 6000 SFU/10(6) splenocytes in the IFN-gamma ELISPOT assay. Th1 cytokine IFN-gamma and TNF-alpha levels from HIV-specific CD8(+) and CD4(+) T cells increased 20- and 8-fold, respectively, with a SAAVI MVA-C boost. Effector and effector memory RT- and Env-specific memory CD8(+) T cell subsets were boosted after MVA immunization, and over time the cells returned to an intermediate memory phenotype similar to that prior to the boost. Immunization of guinea pigs with the DNA-MVA combination induced high titers of antibodies to gp120, although neutralizing activity was weak or absent. The demonstration that these vaccines induce potent cellular immune responses merits their testing in clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/aid.2007.0206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!