The subfamily of growth/differentiation factors (GDFs) known as GDFs 5, 6, and 7 appears to be involved in tendon maintenance and repair, although the precise nature of this role has yet to be elucidated. The aim of the present study was to examine the role of GDF-7 in tendon maintenance by studying tail tendon fascicle gene expression, composition, and material property strain rate dependency in 16-week-old male and female GDF-7 deficient mice. GDF-7 deficiency did not affect the biochemical composition of tail tendon fascicles, nor did it significantly affect the tensile material properties obtained at either slow (5%/s) or fast (50%/s) strain rates. Further, no difference was found between genotypes in the strain rate sensitivity of any tensile material property. Consistent with the compositional analyses, QRT-PCR data did not reveal any differences of twofold or greater in the gene expression levels of collagens I, III, V, nor in the proteoglycans decorin, fibromodulin, lumican, biglycan, versican, or aggrecan. Gdf5 expression was upregulated twofold in GDF-7 deficient tail tendons, and Bmp7 expression was downregulated twofold. No notable differences in expression levels for Bmp1-6 or Gdf6 were detected. GDF-5 protein levels were 50% higher in GDF-7 deficient tail tendon compared to wild type tail tendon. The results of this study support the intriguing possibility that compensation by Gdf-5 may be at least in part responsible for the absence of a strong phenotype in GDF-7 deficient mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.20581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!