Impaired remyelination is critical to neuroinflammation in multiple sclerosis (MS), which causes chronic and relapsing neurological impairments. Recent studies revealed that immunomodulatory activity of statins in an experimental autoimmune encephalomyelitis (EAE) model of MS are via depletion of isoprenoids (farnesyl-pyrophosphate and geranylgeranyl-pyrophosphate) rather than cholesterol in immune cells. In addition, we previously documented that lovastatin impedes demyelination and promotes myelin repair in treated EAE animals. To this end, we revealed the underlying mechanism of lovastatin-induced myelin repair in EAE using in vitro and in vivo approaches. Survival, proliferation (chondroitin sulfate proteoglycan-NG2(+) and late oligodendrocyte progenitor marker(+)), and terminal-differentiation (myelin basic protein(+)) of OPs was significantly increased in association with induction of a promyelinating milieu by lovastatin in mixed glial cultures stimulated with proinflammatory cytokines. Lovastatin-induced effects were reversed by cotreatment with mevalonolactone or geranylgeranyl-pyrophosphate, but not by farnesyl-pyrophosphate or cholesterol, suggesting that depletion of geranygeranyl-pyrophosphate is more critical than farnesyl-pyrophosphate in glial cells. These effects of lovastatin were mimicked by inhibitors of geranylgeranyl-transferase (geranylgeranyl transferase inhibitor-298) and downstream effectors {i.e., Rho-family functions (C3-exoenzyme) and Rho kinase [Y27632 (N-(4-pyridyl)-4-(1-aminoethyl)cyclohexanecarboxamide dihydrochloride)]} but not by an inhibitor of farnesyl-transferase (farnesyl transferase inhibitor-277). Moreover, activities of Rho/Ras family GTPases were reduced by lovastatin in glial cells. Corresponding with these findings, EAE animals exhibiting demyelination (on peak clinical day; clinical scores >/=3.0) when treated with lovastatin and aforementioned agents validated these in vitro findings. Together, these data provide unprecedented evidence that-like immune cells-geranylgeranyl-pyrophosphate depletion and thus inhibition of Rho family functions in glial cells by lovastatin promotes myelin repair in ameliorating EAE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706586 | PMC |
http://dx.doi.org/10.1124/mol.107.044230 | DOI Listing |
J Neurochem
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Aging is the most common risk factor for Multiple Sclerosis (MS) disease progression. Cellular senescence, the irreversible state of cell cycle arrest, is the main driver of aging and has been found to accumulate prematurely in neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Cellular senescence in the central nervous system of MS patients has recently gained attention, with several studies providing evidence that demyelination induces cellular senescence, with common hallmarks of p16INK4A and p21 expression, oxidative stress, and senescence-associated secreted factors.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Pleiotrophin (PTN), a secreted multifunctional growth factor, is highly expressed in the developing brain. Recently, many studies have indicated that PTN participates in the development of brain and plays a neuroprotection after brain injury, especially promoting neuronal survival and neurite outgrowth, stimulating oligodendrocyte maturation and myelination, modulating neuroinflammation, and so on.
Objective: However, no reviews comprehensively summarize the roles of PTN in brain injuries.
Phytomedicine
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China. Electronic address:
Background: Chronic cerebral hypoperfusion (CCH) contributes significantly to white matter injury (WMI) and cognitive impairment, often leading to vascular dementia (VaD). Inefficient clearance of myelin debris by microglia impedes white matter repair, making microglia-mediated myelin clearance a promising therapeutic strategy for WMI. Puerarin (Pu), an isoflavonoid monomer from Pueraria lobata, is known for its neuroprotective, anti-inflammatory, and immunoregulatory properties.
View Article and Find Full Text PDFActa Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!