This report describes the influence of fluid flow and osmotically induced volume changes on Na(+)-Ca(2+) exchange (NCX) activity in transfected CHO cells. Exchange activity was measured as Na(+)-dependent Ca(2+) or Ba(2+) fluxes using the fluorescent probe fura-2. When exchange activity was initiated by superfusing Ba(2+)-containing solutions over the cells for a 20 s interval, a high rate of Ba(2+) uptake was observed while the solution was being applied but the rate of Ba(2+) uptake declined > 10-fold when the solution flow ceased. Ba(2+) efflux in exchange for extracellular Na(+) or Ca(2+) (Ba(2+)-Ca(2+) exchange) was similarly biphasic. During NCX-mediated Ca(2+) uptake, a rapid increase in cytosolic [Ca(2+)] to a peak value occurred, followed by a decline in [Ca(2+)](i) to a lower steady-state value after solution flow ceased. When NCX activity was initiated by an alternate procedure that minimized the duration of solution flow, the rapid phase of Ba(2+) influx was greatly reduced in magnitude and Ca(2+) uptake became nearly monophasic. Solution superfusion did not produce any obvious changes in cell shape or volume. NCX-mediated Ba(2+) and Ca(2+) influx were also sensitive to osmotically induced changes in cell volume. NCX activity was stimulated in hypotonic media and inhibited in hypertonic media; the osmotically induced changes in activity occurred within seconds and were rapidly reversible. We conclude that NCX activity is modulated by both solution flow and osmotically induced volume changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375687 | PMC |
http://dx.doi.org/10.1113/jphysiol.2008.151274 | DOI Listing |
J Pharm Anal
December 2024
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 117004, China.
Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFJ Vis Exp
December 2024
1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry; Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry; Tianjin Institute of Forestry Science, Chinese Academy of Forestry;
Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.
View Article and Find Full Text PDFMechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!