Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An approach based on auscultatory percussion, a technique used by some orthopedists both for bone fracture detection and bone fracture healing assessment, is described. Low-frequency, low-intensity mechanical power, very much like the finger tap of orthopedists, is used to evaluate the vibrational response of the bone. The novel element is the data processing, which incorporates specialized preprocessing and a neural network for estimating fractured bone strength. In addition, a new mathematical model for the vibrational response of a fractured limb, which provides data to design and test the neural network processing scheme, is presented. An experimental procedure is described for acquiring real data from animal and human fractures in a form necessary for neural network input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/51.59209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!