The dominant methodology for image restoration is to stabilize the problem by including a roughness penalty in addition to faithfulness to the data. Among various choices, concave stabilizers stand out for their boundary detection capabilities, but the resulting cost function to be minimized is generally multimodal. Although simulated annealing is theoretically optimal to take up this challenge, standard stochastic algorithms suffer from two drawbacks: i) practical convergence difficulties are encountered with second-order prior models and ii) it remains computationally demanding to favor the formation of smooth contour lines by taking the discontinuity field explicitly into account. This work shows that both weaknesses can be overcome in a multiresolution framework by means of the 2-D discrete wavelet transform (DWT). We first propose to improve convergence toward global minima by single-site updating on the wavelet domain. For this purpose, a new restricted DWT space is introduced and a theoretically sound updating mechanism is constructed on this subspace. Next, we suggest to incorporate the smoothness of the discontinuity field via an additional penalty term defined on the high frequency subbands. The resulting increase in complexity is small and the approach requires the specification of a unique extra parameter for which an explicit selection formula is derived.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2003.812330 | DOI Listing |
Int J Implant Dent
January 2025
Department of Neurosciences, School of Dentistry, University of Padua, Padua, Italy.
Objective: This study aimed at investigating implant survival rate and marginal bone loss (MBL) around extra-short implants. The impact of the loading protocol and of the use of an intermediate abutment was also evaluated, to explore possible differences in terms of the outcome measures.
Materials And Methods: Patients with single or multiple mandibular or maxillary posterior edentulism rehabilitated using extra-short 5-6 mm long implants were included.
Zh Nevrol Psikhiatr Im S S Korsakova
January 2025
Vladimirskii Moscow Regional Research and Clinical Institute, Moscow, Russia.
Objective: To investigate the structural damage in patients with aphasia in the acute phase of ischemic stroke using X-ray computed tomography (CT) scans of the brain.
Material And Methods: We examined 65 right-handed individuals in the acute stage of ischemic stroke in the left middle cerebral artery, including 39 men and 26 women aged 41 to 87 years. The patients were divided into two groups: those with aphasia (group 1, 48) and those without aphasia (group 2, 17).
Ann Neurol
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
Objective: The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [F]SynVesT-1 positron emission tomography / computed tomography (PET CT).
Methods: In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria.
Commun Chem
January 2025
Institute of Biochemistry, University of Münster, Münster, Germany.
Translation of mRNA into protein is a fundamental process and tightly controlled during development. Several mechanisms acting on the mRNA level regulate when and where an mRNA is expressed. To explore the effects of conditional and transient gene expression in a developing organism, it is vital to experimentally enable abrogation and restoration of translation.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Prosthodontics, Faculty of Dentistry, Recep Tayyip Erdoğan University, Rize, Turkey.
Background: Zygomatic implants are becoming an ideal treatment approach for implant-supported prosthesis treatment developed for the atrophic maxilla. This study aims to evaluate the amount and distribution of stress in implants and peri-implant bone using different implant-supported prosthesis configurations in Aramany Class I maxillary defects through 3-dimensional finite element analysis.
Methods: A 3-dimensional finite element model of the Aramany class I defect was created.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!