The plasma pharmacokinetics and brain uptake of the novel neuroprotective agent AM-36 (1-(2-(4-chlorophenyl)-2-hydroxy)ethyl-4-(3,5-bis-(1,1dimethylethyl)-4-hydroxyphenyl) methylpiperazine) were assessed over 72 h following i.v. administration to male Sprague-Dawley rats. At nominal i.v. doses of 0.2, 1 and 3mg kg(-1), AM-36 exhibited an extremely large volume of distribution (18.2-24.6 L kg(-1)) and a long terminal elimination half-life, ranging from 25.2 to 37.7 h. Over this dose range, AM-36 exhibited linear pharmacokinetics, with no apparent change in clearance, volume of distribution or dose-normalised area under the plasma concentration - time curve. AM-36 was very highly bound to plasma proteins (> 99.6%); however, this did not appear to affect the ability of AM-36 to permeate the blood-brain barrier. Following a single i.v. dose of AM-36 at 3mg kg(-1) to rats, brain concentrations were detected for up to 72 h, and the brain-to-plasma ratios were high at all time points (ranging from 8.2 at 5 min post-dose to 0.9 at 72 h post-dose). The very high brain uptake of AM-36 supports previous in-vivo efficacy studies demonstrating the neuroprotective effects of this compound when administered to rats with middle cerebral artery occlusion.

Download full-text PDF

Source
http://dx.doi.org/10.1211/jpp.60.2.0005DOI Listing

Publication Analysis

Top Keywords

brain uptake
12
pharmacokinetics brain
8
am-36
8
uptake am-36
8
novel neuroprotective
8
neuroprotective agent
8
3mg kg-1
8
am-36 exhibited
8
volume distribution
8
am-36 novel
4

Similar Publications

Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).

View Article and Find Full Text PDF

Introduction: Medicare's Annual Wellness Visit (AWV) is a logical opportunity for early detection of cognitive impairment, but recent data for uptake and cognitive assessments during it are lacking.

Methods: We surveyed Medicare beneficiaries of a nationally representative panel about use of AWV and cognitive assessments and analyzed associations between uptake and beneficiaries' characteristics.

Results: Of 1871 participants, 80% had an AWV, among whom 31% underwent formal cognitive testing, 35% were asked about memory problems, including 15% having both.

View Article and Find Full Text PDF

Ga-NOTA-RM26 PET/CT in the evaluation of glioma: a pilot prospective study.

EJNMMI Res

January 2025

Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

Background: Gliomas are the most common malignant primary tumors of the central nervous system. There is an urgent need for new convenient, targeted and specific imaging agents for gliomas. This study aimed to firstly evaluate the feasibility of Ga-NOTA-RM26 PET/CT imaging in glioma and analyze the relationship between the imaging characteristics and glioma grade, classification and molecular alterations.

View Article and Find Full Text PDF

Doxorubicin (Dox) is a chemotherapy agent commonly used to treat multiple types of cancers and is associated with cognitive impairment. The goal of this work was to determine the effect of Dox treatment on dopamine release and uptake and behavior in rats. Rats received one dose per week of Dox (2.

View Article and Find Full Text PDF

Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!