Background: Cardiovascular events are the leading cause of death in end stage renal disease (ESRD). Adherence to phosphate binding medication plays a vital role in reducing serum phosphorus and associated cardiovascular risk. This poses a challenge for patients as the regimen is often complex and there may be no noticeable impact of adherence on symptoms. There is a need to establish the level of nonadherence to phosphate binding medication in renal dialysis patients and identify the factors associated with it.
Methods: The online databases PsycINFO, Medline, Embase and CINAHL were searched for quantitative studies exploring predictors of nonadherence to phosphate binding medication in ESRD. Rates and predictors of nonadherence were extracted from the papers.
Results: Thirty four studies met the inclusion criteria. There was wide variation in reported rates of non-adherence (22-74% patients nonadherent, mean 51%). This can be partially attributed to differences in the way adherence has been defined and measured. Demographic and clinical predictors of nonadherence were most frequently assessed but only younger age was consistently associated with nonadherence. In contrast psychosocial variables (e.g. patients' beliefs about medication, social support, personality characteristics) were less frequently assessed but were more likely to be associated with nonadherence.
Conclusion: Nonadherence to phosphate binding medication appears to be prevalent in ESRD. Several potentially modifiable psychosocial factors were identified as predictors of nonadherence. There is a need for further, high-quality research to explore these factors in more detail, with the aim of informing the design of an intervention to facilitate adherence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270809 | PMC |
http://dx.doi.org/10.1186/1471-2369-9-2 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2025
Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.
Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China.
Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!