Mutations in the BRCA1 gene are responsible for the majority of hereditary breast/ovarian cancers. The functional significance of many mutations/splicing variants identified during the screening of high-risk individuals is difficult to predict due to the lack of in vitro functional tests correlating sequence variants with a risk of cancer development. RNA interference is a promising tool in analyzing functional properties of BRCA1 mutations. Here we designed and functionally analyzed shRNAs directed to 3'-UTR of BRCA1 mRNA that may be used to knock-down expression of endogenous BRCA1. Using retroviral infection, we achieved long-term down-regulation of BRCA1 in a cell-type specific manner. We propose that 3'-UTR-directed shRNAs, coupled with up-regulation of exogenous mutated BRCA1 variants, may constitute a versatile system for the functional analysis of BRCA1 gene alterations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brca1 gene
8
brca1
7
long-term brca1
4
brca1 down-regulation
4
down-regulation small
4
small hairpin
4
hairpin rnas
4
rnas targeting
4
targeting untranslated
4
untranslated region
4

Similar Publications

BRCC3 aggravates pulpitis by activating the NF-κB signaling pathway in dental pulp cells.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Cariology and Endodontology, School & Hospital of Stomatology, Wuhan University, China. Electronic address:

BRCA1/BRCA2-containing complex subunit 3 (BRCC3) has been proved to exert pro-inflammatory effect in various inflammatory diseases through different mechanisms, but its involvement in pulpitis remains unclear. This study aims to investigate the regulatory role and mechanisms of BRCC3 in modulating dental pulp cell inflammation and pulpitis progression. The expression of BRCC3 was observed to be elevated in human/mouse pulpitis samples and lipopolysaccharide-stimulated human dental pulp cells (hDPCs).

View Article and Find Full Text PDF

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Efficacy of PARPi re-maintenance therapy for recurrent ovarian cancer.

Front Oncol

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Objective: The current clinical data regarding the re-administration of PARPi maintenance therapy in platinum sensitive recurrent ovarian cancer (PSROC) is limited. This study aims to investigate the efficacy and associated factors of PARPi re-maintenance therapy in PSROC patients in China.

Methods: In this study, there were 201 patients with PSROC who had received maintenance therapy previously and achieved complete or partial response after platinum-based chemotherapy upon recurrence.

View Article and Find Full Text PDF

Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!