Successively slaughtered poultry flocks were sampled for Salmonella to study the relationship between gastrointestinal colonization of the birds and contamination of the carcasses after slaughter. Samples from 56 broiler flocks and 16 spent layer and breeder flocks were collected in six slaughterhouses. Salmonella isolates were serotyped and further characterized by pulsed-field gel electrophoresis (PFGE). Although only 7 (13%) broiler flocks were colonized with Salmonella at slaughter, carcasses of 31 (55%) broiler flocks were contaminated after slaughter. Concerning the layer and breeder flocks, 11 (69%) flocks were colonized in the gastrointestinal tract, but after slaughter, carcasses of all flocks were contaminated. The Salmonella status determined at the farm did not always correlate to the status at slaughter. On the other hand, the slaughter of Salmonella-colonized flocks did not always result in the contamination of the carcasses with the same PFGE types isolated from the gastrointestinal tract. When only uncolonized flocks were slaughtered, the carcasses of flocks were on some occasions still contaminated with Salmonella. This indicates possible cross-contamination from the slaughter equipment or transport crates. These observations show that it is difficult to reach the benefits of logistic slaughter in commercial poultry slaughterhouses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-71.1.146 | DOI Listing |
Foodborne Pathog Dis
January 2025
Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea.
Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 isolates obtained from cattle ( = 1582), pigs ( = 1572), and chickens ( = 1594) were assessed for susceptibility to 12 antimicrobials.
View Article and Find Full Text PDFS D Med
December 2024
Department of Internal Medicine, University of South Dakota Sanford School of Medicine.
Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.
View Article and Find Full Text PDFSci Total Environ
January 2025
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America. Electronic address:
Outbreaks of infectious diseases involving depopulation of animals require on-farm practices to stage carcasses when final disposal methods are unavailable. The current study assessed various materials and techniques for containing carcasses to minimize leachate and biological substances. The tested materials included tarps, soil, corn stover (CS), and lime, while the methods involved covers, chemical additives, barriers, and containment.
View Article and Find Full Text PDFAquac Nutr
January 2025
Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!