Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200704883 | DOI Listing |
J Org Chem
January 2025
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
A novel silver-catalyzed cascade radical isonitrile insertion and defluorinative cyclization have been developed to synthesize CFH- and phosphinoyl-containing quinolines from -isocyanyl α-trifluoromethylstyrenes. The reaction proceeded under redox-neutral conditions and allowed the construction of a highly attractive quinoline ring system, with the simultaneous formation of the CFH group and introduction of various phosphinoyl groups in a single transformation, showing operational simplicity, a wide substrate scope, good tolerance for functional groups, and remarkable atom-/stepeconomy. Mechanistic studies indicated that the reaction is likely to involve the participation of P-centered radicals and key carbanion intermediates.
View Article and Find Full Text PDFOrg Lett
January 2025
Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.
View Article and Find Full Text PDFWater Res
February 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. Electronic address:
Chem Sci
October 2024
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
Selective functionalisation of synthetically useful vinyl epoxides carbon-carbon (C-C) bond formation has been a major challenge for many years due to its unique inherent chemical reactivity. Non-stabilised carbanions in the form of organometallic reagents have been shown to be robust and versatile reagents in C-C bond formation; however, they are employed in superstoichiometric quantities, require the protection of active functional groups, and generate copious amounts of metallic waste. Therefore, the development of mild carbanion sources as simple alternatives is highly desired.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!