Studies of translocation catalysis.

Biosci Rep

Department of Biochemistry, University of Cambridge.

Published: December 1991

There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein of Escherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01130216DOI Listing

Publication Analysis

Top Keywords

translocation catalysis
8
studies translocation
4
catalysis symbiotic
4
symbiotic relationship
4
relationship evolution
4
evolution fundamental
4
fundamental theory
4
theory winning
4
winning experimentally-based
4
experimentally-based knowledge
4

Similar Publications

OCTN1 mediates acetylcholine transport in the A549 lung cancer cells: possible pathophysiological implications.

Front Mol Biosci

December 2024

Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy.

A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux and .

View Article and Find Full Text PDF

Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenases use 2OG and O cofactors to catalyse substrate oxidation and yield oxidised product, succinate, and CO. Simultaneous detection of substrate and cofactors is difficult, contributing to a poor understanding of the dynamics between substrate oxidation and 2OG decarboxylation activities. Here, we profile 5-methylcytosine (C)-oxidising Ten-Eleven Translocation (TET) enzymes using MS and H NMR spectroscopy methods and reveal a high degree of substrate oxidation-independent 2OG turnover under a range of conditions.

View Article and Find Full Text PDF

Mechanism of proton release during water oxidation in Photosystem II.

Proc Natl Acad Sci U S A

December 2024

Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden.

Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (MnOCa) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated.

View Article and Find Full Text PDF

Spermatogenesis is a highly complex and tightly regulated cellular differentiation process closely related to the productive performance of male livestock. We do not yet have a clear understanding of the spermatogenesis mechanism of buffalo. In this study, spermatogonia, spermatocytes and spermatids were analysed by flow cytometry.

View Article and Find Full Text PDF

The mechanism of transcription proceeds through the formation of R-loop structures containing a DNA-RNA heteroduplex and a single-stranded DNA segment that should be placed inside the elongation complex; therefore, these nucleic acid segments are limited in length. The attachment of each nucleotide to the 3' end of an RNA strand requires a repeating cycle of incoming nucleoside triphosphate binding, catalysis, and enzyme translocation. Within these steps of transcription elongation, RNA polymerase sequentially goes through several states and is post-translocated, catalytic, and pre-translocated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!