Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function.

J Am Soc Nephrol

Division of Genetic Medicine, Department of Medicine and Cell and Developmental Biology, Vanderbilt University, 539 LH, 2215 Garland Avenue, Nashville, TN 37232, USA.

Published: March 2008

Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway. For investigation of this, a mouse model with a gene-targeted mutation in Pkhd1 that recapitulates phenotypic characteristics of human autosomal recessive polycystic kidney disease was produced. The absence of FPC is associated with aberrant ciliogenesis in the kidneys of Pkhd1-deficient mice. It was found that the COOH-terminus of FPC and the NH2-terminus of PC2 interact and that lack of FPC reduced PC2 expression but not vice versa, suggesting that PC2 may function immediately downstream of FPC in vivo. PC2-channel activities were dysregulated in cultured renal epithelial cells derived from Pkhd1 mutant mice, further supporting that both cystoproteins function in a common pathway. In addition, mice with mutations in both Pkhd1 and Pkd2 had a more severe renal cystic phenotype than mice with single mutations, suggesting that FPC acts as a genetic modifier for disease severity in autosomal dominant polycystic kidney disease that results from Pkd2 mutations. It is concluded that a functional and molecular interaction exists between FPC and PC2 in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2391052PMC
http://dx.doi.org/10.1681/ASN.2007070770DOI Listing

Publication Analysis

Top Keywords

polycystic kidney
12
kidney disease
12
autosomal recessive
8
recessive polycystic
8
mutations pkhd1
8
fpc
8
epithelial cells
8
function common
8
pc2
5
fibrocystin/polyductin modulates
4

Similar Publications

Mechanical stress modulates bone formation and organization of the extracellular matrix (ECM), the interaction of which affects heterotopic ossification (HO). However, the mechanically sensitive cell populations in HO and the underlying mechanism remain elusive. Here, we show that the mechanical protein Polysyctin-1 (PC1, Pkd1) regulates CTSK lineage tendon-derived mesenchymal stem cell (TDMSC) fate and ECM organization, thus affecting HO progression.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a life-threatening complication of chronic liver disease (CLD) that currently can be managed only by liver transplant. Though uncommon, some children with kidney disease have coexistent CLD and hence are at risk of developing HPS. Paediatric cases of HPS are rarely described in the nephrology literature.

View Article and Find Full Text PDF

Advances in CRISPR-Cas systems for kidney diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India. Electronic address:

Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!