Reorganization of motor circuits in the cerebral cortex is thought to contribute to recovery following stroke. These can be examined with transcranial magnetic stimulation (TMS) using measures of corticospinal tract integrity and intracortical excitability. However, little is known about how these changes develop during the important early period post-stroke and their influence on recovery. We used TMS to obtain multiple measures bilaterally in a group of 10 patients during the early days and weeks and up to 6 months post-stroke, in order to examine correlations with tests of hand function. Ten age-matched healthy subjects were also studied. After stroke, day-to-day variation in performance was unrelated to physiological measures in the first 3 weeks. Measures of corticospinal integrity averaged over the same period correlated well with hand function, but this relationship became weaker at 3 months. In contrast, most intracortical excitability measures did not correlate acutely but did so strongly at 3 months. Thus in the acute stage, patients' performance is limited by damage to corticospinal output. Improved performance at 3 months may depend on reorganization in alternative cortical networks to maximize the efficiency of remaining corticospinal pathways--intracortical disinhibition may aid recovery by promoting access to these networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474452 | PMC |
http://dx.doi.org/10.1093/cercor/bhm218 | DOI Listing |
Gait Posture
January 2025
Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway. Electronic address:
Background: Chronic ankle instability (CAI) has been associated with neuromuscular control dysfunction, particularly of the peroneal musculature.
Research Question: How do neuromuscular characteristics of the peroneal muscles, including corticospinal excitability, strength, proprioception (force sense) and electromyographic measures differ in individuals with CAI compared to healthy control counterparts aged 18-45?
Methods: A systematic review with meta-analysis was conducted by retrieving relevant articles from electronic databases including EBSCOhost (CINAHL Complete, AMED, SPORTDiscus), Ovid (MEDLINE, Embase), Web of Science, Scopus and Cochrane Library as well as Grey literature sources. The eligibility and methodological quality of the included case-control and cross-sectional studies were assessed by two reviewers.
Brain Stimul
January 2025
Department of Neurology, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA.
Objective: We aimed to determine the maximum safe spatial-peak pulse-average intensity (I) of low-intensity focused ultrasound stimulation (LIFUS) in stroke patients and explore its effect on motor learning and corticospinal excitability.
Methods: We adopted the classic 3 + 3 design to escalate I (estimated in-vivo transcranial value) from 0, 1, 2, 4, 6, to 8 W/cm. Stopping rules were pre-defined: 2-degree scalp burn, clinical seizure, new lesion on diffusion-weighted imaging or major reduction in apparent diffusion coefficient, and participant discontinuation due to any reason.
JAMA Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.
Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.
Exp Physiol
January 2025
Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia.
Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Kinesiology, Trent University, Peterborough, ON, Canada.
Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!