Neural hysteresis plays a fundamental role in stereopsis and reveals the existence of positive feedback at the cortical level [Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55-80]. We measured hysteresis as a function of orientation disparity in tilted gratings in which a transition is perceived between stereopsis and binocular rivalry. The patterns consisted of sinusoidal gratings with orientation disparities (0 degrees, 1 degrees, 2 degrees,..., 40 degrees) resulting in various degrees of tilt. A movie of these 41 pattern pairs was shown at a rate of 0.5, 1 or 2 pattern pairs per second, in forward or reverse order. Two transition points were measured: the point at which the single tilted grating appeared to split into two rivalrous gratings (T1), and the point at which two rivalrous gratings appeared to merge into a single tilted grating (T2). The transitions occurred at different orientation disparities (T1=25.4 degrees, T2=17.0 degrees) which was consistent with hysteresis and far exceeded the difference which could be attributed to reaction time. The results are consistent with a cortical model which includes positive feedback and recurrent inhibition between neural units representing different eyes and orientations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2007.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!