Serogroups, atypical biochemical characters, colicinogeny and antibiotic resistance pattern of Shiga toxin-producing Escherichia coli isolated from diarrhoeic calves in Gujarat, India.

Zoonoses Public Health

Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India.

Published: May 2008

This study was designed to investigate the antibiotic resistance, colicinogeny, serotyping and atypical biochemical characteristics of 41 Shiga toxin-producing Escherichia coli (STEC) strains detected using polymerase chain reaction from 90 E. coli strains isolated from 46 diarrhoeic calves. The STEC strains belonged to 14 different serogroups. Seventeen per cent of the STEC strains carried the eaeA gene while 14.28% of the 49 non-STEC strains were eaeA positive. Twenty eight (68.29%) of the 41 STEC strains were rhamnose non-fermentors. All the STEC strains revealed resistance to at least three of the antibiotics tested. 100% resistance was found against kanamycin and cephalexin followed by cephaloridine, enrofloxacin, amikacin, ampicillin, tetracycline, ceftiofur, ciprofloxacin, colistin and co-trimoxazole. Eighteen (44%) of the STEC strains produced colicin and all these colicinogenic strains were resistant to three or more antibiotics. Eleven STEC strains (26.82%) showed urease activity. The results of this study suggest that diarrhoeic calves are an important reservoir of STEC strains that are potentially pathogenic for farm animals and humans. Moreover, rhamnose fermentation, colicinogeny and atypical biochemical behaviour, such as urease activity, may serve as important markers or diagnostic tools for epidemiological surveys to trace the source of infection in disease outbreaks.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1863-2378.2007.01093.xDOI Listing

Publication Analysis

Top Keywords

stec strains
32
atypical biochemical
12
diarrhoeic calves
12
strains
11
antibiotic resistance
8
shiga toxin-producing
8
toxin-producing escherichia
8
escherichia coli
8
isolated diarrhoeic
8
stec
8

Similar Publications

Characterization of Broad Spectrum Bacteriophage vB ESM-pEJ01 and Its Antimicrobial Efficacy Against Shiga Toxin-Producing in Green Juice.

Microorganisms

January 2025

Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea.

Shiga toxin-producing (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting and species, and assessed its efficacy in reducing STEC in vitro and food matrices.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.

View Article and Find Full Text PDF

An efficient, high-throughput enrichment system for the rapid detection of E. coli at low concentrations in water.

Anal Chim Acta

February 2025

School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, 130033, China; Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun, 130033, China. Electronic address:

Certain virulent strains of Escherichia coli (E. coli), notably the enterohemorrhagic serotype O157:H7, are recognized for causing diarrhea, gastroenteritis, and a range of illnesses that pose significant risks to public health and the safety of drinking water supplies. Early detection and management of E.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!