Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium (Ca) plays an important role in regulating various cellular processes. In a variety of cell types, Ca signaling occurs within microdomains where channels deliver localized pulses of Ca activating a nearby collection of Ca-sensitive receptors. The small number of channels involved ensures that the signaling process is stochastic. The aggregate response of several thousand of these microdomains yields a whole-cell response which dictates the cell behavior. Here, we study the statistical properties of a population of these microdomains in response to a trigger signal. We use a first-passage-time approach to show analytically how Ca release in the whole cell depends on properties of Ca channels within microdomains. Using these results we explain for the first time the underlying mechanism for the graded relationship between Ca influx and Ca release in cardiac cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.76.051920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!